Respuesta :

r3t40

Theory

Given quadratic equation in standard form:

[tex]ax^2+bx+c=0[/tex].

Its zeros (roots) are solutions that can be computed using quadratic formula:

[tex]

x_1=\dfrac{-b^2+\sqrt{b^2-4ac}}{2a} \\

x_2=\dfrac{-b^2-\sqrt{b^2-4ac}}{2a}

[/tex].

End Theory

Answer

We have quadratic equation:

[tex]3x^2+17-6=0[/tex].

Which can be simplified and rewritten to:

[tex]3x^2+0x+11=0[/tex].

From this we can extrapolate the coefficients:

[tex]a=3,b=0,c=11[/tex].

Insert the coefficients in the quadratic formulas and get calculate the roots (zeros/solutions):

[tex]x_1=\dfrac{-0^2+\sqrt{0^2-4(3)(11)}}{2\cdot3}\approx0+1.91i[/tex].

[tex]x_2=\dfrac{-0^2-\sqrt{0^2-4(3)(11)}}{2\cdot3}\approx0-0.91i[/tex].

So the solutions are two complex numbers.

End Answer

Hope this helps.