Respuesta :

Answer:[tex]x^2-5x=-12(y+2)[/tex]

Step-by-step explanation:

Given

Parabola has x-intercept has [tex](3,0)[/tex] and [tex](8,0)[/tex]

and Y-intercept as [tex](0,-2)[/tex]

Now the general equation of parabola is

[tex]y=ax^2+bx+c\quad \ldots(i)[/tex]

Substitute  [tex](0,-2)[/tex] in [tex](i)[/tex] we get

[tex]-2=c[/tex]

Now substitute [tex](3,0)[/tex] in equation [tex](i)[/tex]

[tex]0=a(3)^2+3b-2\quad \ldots(ii)[/tex]

Now substitute [tex](8,0)[/tex] in equation [tex](i)[/tex]

[tex]0=a(8)^2+8b-2\quad \ldots(iii)[/tex]

Solving [tex](ii)[/tex] and [tex](iii)[/tex] we get

[tex]a=\frac{-1}{12}\ \text{and}\ b=\frac{5}{12}[/tex]

therefore

[tex]y=\frac{-x^2}{12}+\frac{5x}{12}-2[/tex]

[tex]12y=-x^2+5x-24[/tex]