Respuesta :

Answer:D

Step-by-step explanation:

Inverse of given matrix is [tex]\frac{1}{5} \left[\begin{array}{ccc}2&-3\\1&1\\\end{array}\right][/tex]

What is inverse of given matrix ?

Given matrix is A =  [tex]\left[\begin{array}{ccc}1&3\\-1&2\\\end{array}\right][/tex]

Determinant of A = detA = (1×2)-(-1)(3) = 2-(-3)=2+3=5≠0

Since, detA≠0, we can say that, [tex]A^{-1}[/tex] exists.

adj(A) = [tex]\left[\begin{array}{ccc}2&-3\\1&1\\\end{array}\right][/tex]

∴ [tex]A^{-1} =\frac{1}{detA} adj(A)[/tex]

          [tex]=\frac{1}{5} \left[\begin{array}{ccc}2&-3\\1&1\\\end{array}\right][/tex]

So, the 4th option is correct.

Learn more about matrix inverse here :

https://brainly.com/question/12440283

#SPJ2