Respuesta :

Answer:

x = 3, x = 6

Step-by-step explanation:

Using the rules of logarithms

log x - log y = log ([tex]\frac{x}{y}[/tex] )

log[tex]x^{n}[/tex] ⇔ nlog x

[tex]log_{b}[/tex] x = n ⇔ x = [tex]b^{n}[/tex]

Given

2[tex]log_{3}[/tex] x - [tex]log_{3}[/tex](x - 2) - 2 = 0 ( add 2 to both sides )

[tex]log_{3}[/tex] x² - [tex]log_{3}[/tex](x - 2) = 2

[tex]log_{3}[/tex] ([tex]\frac{x^2}{x-2}[/tex] ) = 2

[tex]\frac{x^2}{x-2}[/tex] = 3² = 9 ( multiply both sides by x - 2 )

x² = 9(x - 2) ← distribute

x² = 9x - 18 ( subtract 9x - 18 from both sides )

x² - 9x + 18 = 0 ← in standard form

(x - 3)(x - 6) = 0 ← in factored form

Equate each factor to zero and solve for x

x - 3 = 0 ⇒ x = 3

x - 6 = 0 ⇒ x = 6