Circle R has equation
(x + 10)2 + (y - 10)2 = 48. What
are the center and radius of
circle R?
A. center (-10,10), radius = 413
B. center (-10,10), radius = 48
C. center (10,-10), radius = 413
D. center (10,-10), radius = 48

Respuesta :

Answer:

The center is (-10,10)  and the radius is 4sqrt(3)

Step-by-step explanation:

(x + 10)^2 + (y - 10)^2 = 48

We can write the equation of a circle as

(x -h)^2 + (y - k)^2 = r^2  where (h,k) is the center and r is the radius

(x-  -10)^2 + (y - 10)^2 = (sqrt(16*3) )^2

(x-  -10)^2 + (y - 10)^2 = (4sqrt(3)) ^2

The center is (-10,10)  and the radius is 4sqrt(3)