Answer:
[tex]3x^2 + 11x + 5 = 0 : x = \frac{-11 + \sqrt{61} }{6} , x = \frac{-11 - \sqrt{61} }{6}[/tex]
Decimal:
[tex](x = -0.53162..., x = -3.13504...)[/tex]
Step-by-step explanation:
[tex]3x^2+11x+5=0[/tex]
Solve with the quadratic formula:
For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the solutions are:
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
For [tex]a=3,\:b=11,\:c=5:\quad x_{1,\:2}=\frac{-11\pm \sqrt{11^2-4\cdot \:3\cdot \:5}}{2\cdot \:3}[/tex]
[tex]x=\frac{-11 + \sqrt{11^2-4\cdot \:3\cdot \:5}}{2\cdot \:3} : \frac{-11 + \sqrt{61} }{6}[/tex]
[tex]x=\frac{-11 - \sqrt{11^2-4\cdot \:3\cdot \:5}}{2\cdot \:3} : \frac{-11 - \sqrt{61} }{6}[/tex]
The solutions to the quadratic equation are:
[tex]x=\frac{-11+\sqrt{61}}{6},\:x=\frac{-11-\sqrt{61}}{6}[/tex]
Hope I helped. If so, may I get brainliest and a thanks?
Thank you, have a good day! =)