Respuesta :
Answer:
1/3n²(n − 1) units³
Step-by-step explanation:
The expression represents the volume of the pyramid [tex]\rm \dfrac{n^2(n-1)}{3}[/tex].
What is the volume of the pyramid?
The volume of a pyramid is the measure of the number of units occupied by the pyramid.
The volume of the pyramid is given by;
[tex]\rm Volume \ of \ pyramid =\dfrac{1}{3} \times Base \times Height[/tex]
A solid right pyramid has a square base with an edge length of n units.
The height of the pyramid is n minus 1 unit.
Substitute all the values in the formula
[tex]\rm Volume \ of \ pyramid =\dfrac{1}{3} \times Base \times Height\\\\\rm Volume \ of \ pyramid =\dfrac{1}{3} \times n^2 \times (n-1)\\\\Volume \ of \ pyramid =\dfrac{n^2(n-1)}{3}[/tex]
Hence, the expression represents the volume of the pyramid [tex]\rm \dfrac{n^2(n-1)}{3}[/tex].
Learn more about pyramid here;
https://brainly.com/question/17615619
#SPJ2