The angle
θ
1
θ
1

theta, start subscript, 1, end subscript is located in Quadrant
III
IIIstart text, I, I, I, end text, and
cos

(
θ
1
)
=

13
30
cos(θ
1

)=−
30
13

cosine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis, equals, minus, start fraction, 13, divided by, 30, end fraction .
What is the value of
sin

(
θ
1
)
sin(θ
1

)sine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis?

Respuesta :

Answer:

[tex]sin\theta_1 = -\frac{\sqrt{731}}{30}[/tex] is the correct answer.

Step-by-step explanation:

It is given that [tex]\theta_{1}[/tex]  is in third quadrant.

[tex]cos\theta_{1}[/tex] is always negative in 3rd quadrant and also

[tex]sin\theta_{1}[/tex] is always negative in 3rd quadrant.

Also, we know the following identity about  and :

[tex]sin^2\theta + cos^2\theta = 1[/tex]

Put [tex]\theta[/tex] as [tex]\theta_{1}[/tex]:

[tex]sin^2\theta_1 + cos^2\theta_1 = 1[/tex]

We are given that [tex]cos\theta_1 = -\frac{13}{30}[/tex]

[tex]sin^2\theta_1 + (\frac{-13}{30})^2 = 1\\[/tex]

[tex]\Rightarrow sin^2\theta_1 = 1 - \dfrac{169}{900}\\\Rightarrow sin^2\theta_1 = \dfrac{900-169}{900}\\\Rightarrow sin^2\theta_1 = \dfrac{731}{900}\\\Rightarrow sin\theta_1 = +\sqrt{\dfrac{731}{900}}, -\sqrt{\dfrac{731}{900}}\\\Rightarrow sin\theta_1 = +\dfrac{\sqrt{731}}{30}, -\dfrac{\sqrt{731}}{30}[/tex]

[tex]\theta_{1}[/tex] is in 3rd quadrant so [tex]sin\theta_{1}[/tex] is negative.

So [tex]sin\theta_1 = -\frac{\sqrt{731}}{30}[/tex]