Respuesta :

Answer:

720.85 cm3

Step-by-step explanation:

As the cylinders are similar, the ratio of their diameters is the same ratio of their heights, so we have that:

d1 /d2 = h1 / h2

If the volume of the larger cylinder is 9600 cm3, we can find its height:

V = pi*r^2 * h

9600 = pi * 32^2 * h

h = 9600 / (pi * 32^2) = 2.9842 cm

Now we find h2:

64 / 27 = 2.9842 / h2

h2 = 27 * 2.9842 / 64 =  1.259 cm

Finally, we can find the volume of the smaller cylinder:

V = pi * r^2 * h

V = pi * 13.5^2 * 1.259 = 720.85 cm3

Answer:

The volume of the smaller paint can is 720.85 [tex]cm^{3}[/tex].

Step-by-step explanation:

Since the two paint cans are similar, the dimensions of their diameters and heights are in a definite proportion.

The volume of a cylinder = [tex]\pi[/tex][tex]r^{2}[/tex]h

Since the diameter of the larger paint can is 64 cm, the radius = [tex]\frac{diameter}{2}[/tex]

                                   = [tex]\frac{64}{2}[/tex]

                                   = 32 cm

Given that the volume is 9600 cubic centimetre, the height of the larger paint can could be determined by;

    V =  [tex]\pi[/tex][tex]r^{2}[/tex]h

   9600 = [tex]\frac{22}{7}[/tex] × [tex]32^{2}[/tex] × h

   9600 = 3218.2857 h

⇒      h = 2.983 cm

Two cylinders are similar if their diameter and height are proportional.

Let [tex]d_{1}[/tex] represent the diameter of the larger paint can, [tex]d_{2}[/tex] the diameter of the smaller paint can, [tex]h_{1}[/tex] the height of the larger paint can and [tex]h_{2}[/tex] the height of the smaller paint can. So that;

[tex]\frac{d_{1} }{d_{2} }[/tex] = [tex]\frac{h_{1} }{h_{2} }[/tex]

[tex]\frac{64}{27}[/tex] = [tex]\frac{2.983}{h_{2} }[/tex]

⇒        [tex]h_{2}[/tex] = 1.2585

           [tex]h_{2}[/tex] = 1.3 cm

If the diameter of the smaller paint can is 27, then its radius = 13.5 cm. So that its volume cane be determined by;

       volume = [tex]\pi[/tex][tex]r^{2}[/tex]h

                    = [tex]\frac{22}{7}[/tex] × [tex](13.5)^{2}[/tex] ×1.2585

                   = 720.8508

                  = 720.85 [tex]cm^{3}[/tex]

The volume of the smaller paint can is 720.85 [tex]cm^{3}[/tex].