Consider the function f(x)=x2+bx−16, where b is a constant.
Part A
If the function has an axis of symmetry at x=5, what is the value of b?
Part B
If b=−6, what are the zero(s) of the function?

Respuesta :

F(x)=x^2+bx-16
x=5
F(5)=5^2+b(5)-16
=25+5b-16=0
=5b+9=0
=5b=-9
=b= -9/5
By remainder theorem

A transformation that leaves the graph unchanged is regarded as asymmetry of a function. In this the value of b is [tex]-\frac{9}{5}[/tex] and zeros are 8, -2.

Symmetry function:

Function:

[tex]F(x)=x^2+bx-16[/tex]

Part a)

when x=5

b=?

Part b)

b=-6

zero=?

The calculation for part a:

[tex]F(x)=x^2+bx-16[/tex]

x=5

[tex]\to F(5)=5^2+b\times 5-16\\\\\to 25+5b-16=0\\\\\to 9+5b=0\\\\\to 5b=-9\\\\\to b=-\frac{9}{5}[/tex]

The calculation for part b:

[tex]F(x)=x^2+bx-16[/tex]

b= -6

[tex]\to F(x)=x^2+ (-6)\times x-16\\\\\to F(x)=x^2-6x-16\\\\[/tex]

[tex]\to x^2-6x-16=0\\\\\to x^2-(8x-2x)-16=0\\\\\to x^2-8x+2x-16=0\\\\\to x(x-8)+2(x-8)=0\\\\\to (x-8) (x+2)=0\\\\\to x-8=0\ \ \ \ \ \ \ \ \ \ \ or \ \ \ \ \ \ \ x+2=0\\\\\to x=8\ \ \ \ \ \ \ \ \ \ \ or \ \ \ \ \ \ \ x=-2\\\\[/tex]

So, the value of b is [tex]-\frac{9}{5}[/tex] and zeros are 8, -2.

Find out more about the symmetry here:

brainly.com/question/15970176