Respuesta :
Answer:
See below.
Step-by-step explanation:
a)
3x - 8 > 16
3x > 24
x > 8
b)
2x - 1 < 9
2x < 10
x < 5
c)
There are no integers that satisfy both inequalities since there is no number that is both greater than 8 and less than 5.
Answer:
a) [tex]\{x\in \mathbb{R}|x>8 \}[/tex] or just [tex]x>8[/tex], or [tex]\left(8,\:\infty \:\right)[/tex]
b)[tex]\{x\in \mathbb{R}|x<5 \}[/tex] or just [tex]x<5[/tex], or [tex](-\infty, 5)[/tex]
c) There's no integer that satisfy both inequalities.
Step-by-step explanation:
a) [tex]3x - 8 > 16[/tex]
[tex]3x - 8 +8> 16+8\\3x>24\\[/tex]
[tex]$\frac{3x}{3}>\frac{24}{3} $[/tex]
[tex]x>8[/tex]
Interval notation: [tex]\left(8,\:\infty \:\right)[/tex]
[tex]\{x\in \mathbb{R}|x>8 \}[/tex]
b) [tex]2x-1 < 9[/tex]
[tex]2x-1 +1< 9+1\\2x<10\\x<5[/tex]
Interval notation: [tex](-\infty, 5)[/tex]
[tex]\{x\in \mathbb{R}|x<5 \}[/tex]
c) The integers that satisfy both inequalities:
[tex](-\infty, 5)\cap \left(8,\:\infty \:\right) = \emptyset[/tex]
<---------------- 5 ---------------- 8 ------------------->