Answer:
99% of confidence intervals for mean age of ICU patients
(53.8920 , 61.2079)
Step-by-step explanation:
Explanation:-
Given sample mean [tex]x^{-} = 57.55[/tex]
Given standard error is determined by
S.E =[tex]\frac{S.D}{\sqrt{n} }[/tex]
Given data standard error = 1.42
99% of confidence intervals for mean is determined by
[tex](x^{-} - Z_{0.01} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.01} \frac{S.D}{\sqrt{n} } )[/tex]
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01}{2} } = Z_{0.05} = 2.576[/tex]
[tex](x^{-} - 2.576 S.E , x^{-} + 2.576 S.E)[/tex]
[tex](57.55 - 2.576X 1.42 , 57.55+ 2.576 X1.42)[/tex]
(53.8920 , 61.2079)
Conclusion:-
99% of confidence intervals for mean is determined by
(53.8920 , 61.2079)