Respuesta :
Answer:
[tex]y = 16*2^{x}[/tex]
Step-by-step explanation:
We want an exponential function in the following format:
[tex]y = ab^{x}[/tex]
Goes through the point (0,16).
This means that when [tex]x = 0, y = 16[/tex]
So
[tex]y = ab^{x}[/tex]
[tex]16 = ab^{0}[/tex]
Since [tex]b^{0} = 1[/tex]
[tex]a = 16[/tex]
So
[tex]y = 16b^{x}[/tex]
Goes through the point (7,2048).
This means that when [tex]x = 7, y = 2048[/tex]
Then
[tex]y = 16b^{x}[/tex]
[tex]2048 = 16b^{7}[/tex]
[tex]b^{7} = \frac{2048}{16}[/tex]
[tex]b^{7} = 128[/tex]
[tex]b = \sqrt[7]{128}[/tex]
[tex]b = 2[/tex]
So the function is:
[tex]y = 16*2^{x}[/tex]
Answer:
[tex]y = 16*2^{x}[/tex]
Step-by-step explanation:
For this case we have two points given (0,16) and (7,2048). And we want to find a function given by this general expression:
[tex]y= ab^x[/tex]
And using the first point given we have:
[tex]16 = a b^0 a = 16[/tex]
Now we can use the info from the second point and we have:
[tex]2048 = 16 b^7[/tex]
We can divide 16 in both sides and we got
[tex]128=b^7[/tex]
And using an exponent 1/7 in both sides we got:
[tex](128)^{1/7} = b b = 2[/tex]
And then our model would be given:
[tex]y = 16*2^{x}[/tex]