Answer:
[tex]\frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }[/tex]
Step-by-step explanation:
Since the foci are at(0,±c) = (0,±63) and vertices (0,±a) = (0,±91), the major axis is the y- axis. So, we have the equation in the form (with center at the origin) [tex]\frac{x^{2} }{b^{2} } + \frac{y^{2} }{a^{2} }[/tex].
We find the co-vertices b from b = ±√(a² - c²) where a = 91 and c = 63
b = ±√(a² - c²)
= ±√(91² - 63²)
= ±√(8281 - 3969)
= ±√4312
= ±14√22
So the equation is
[tex]\frac{x^{2} }{(14\sqrt{22}) ^{2} } + \frac{y^{2} }{91^{2} } = \frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }[/tex]