Answer:
[tex]y = \frac{3}{5} x + 8 \frac{4}{5} [/tex]
Step-by-step explanation:
Point slope form
y=mx +c, where m is the gradient and c is the y-intercept.
To find the gradient, use the formula below:
[tex]gradient = \frac{y1 - y2}{x1 - x2} [/tex]
[tex]m = \frac{7 - 4}{ - 3 - ( - 8)} \\ m = \frac{3}{ - 3 + 8} \\ m = \frac{3}{5} [/tex]
Substitute the value of m into the equation
[tex]y = \frac{3}{5} x + c[/tex]
To find c, substitute a coordinate into the equation.
When x= -3, y=7,
[tex]7 = \frac{3}{5}( - 3) + c \\ 7 = - \frac{9}{5} + c \\ c = 7 + \frac{9}{5} \\ c = 8 \frac{4}{5} [/tex]
Thus, the equation of the line is [tex]y = \frac{3}{5} x + 8 \frac{4}{5) [/tex]