What is the equation of the quadratic function with a vertex at (2.-25) and an x-intercept at (7.0)?

fix) = (x - 2)(x - 7)

fx) = (x + 2)(x + 7)

fx) = (x - 3)(x + 7)

fix) = (x+3)(x-7)

Mark this and phim

Save and Exit

Respuesta :

Answer:

[tex]f(x) = (x+3)\cdot (x-7)[/tex]

Step-by-step explanation:

According to the statement, the quadratic function (parabola) has the following form:

[tex]y + 25 = C \cdot (x-2)^{2}[/tex]

The standard form is unleashed after expading the algebraic equation:

[tex]y + 25 = C\cdot (x^{2}-4\cdot x +4)[/tex]

[tex]y = C\cdot x^{2} - 4\cdot C \cdot x + (4\cdot C - 25)[/tex]

The zeroes of the second-order polynomial are contained in this expression:

[tex]x = \frac{4\cdot C \pm \sqrt{16\cdot C^{2}- 4\cdot C \cdot (4\cdot C - 25)}}{2\cdot C}[/tex]

[tex]x = 2 \pm \frac{5\cdot \sqrt {C}}{ C}[/tex]

Given that [tex]x = 7[/tex] and assuming a positive sign, the value of C is finally found:

[tex]7\cdot C = 2\cdot C + 5\cdot \sqrt{C}[/tex]

[tex]5\cdot C = 5 \cdot \sqrt{C}[/tex]

[tex]C = +1[/tex] (since vertex is a minimum).

The remaining zero of the polynomial is:

[tex]x = 2 - 5[/tex]

[tex]x = -3[/tex]

Therefore, the polynomial is [tex]f(x) = (x+3)\cdot (x-7)[/tex].