Respuesta :

[tex]a_{17}[/tex]= -40

a + 16d = -40 ...... -(i)

[tex]a_{28}[/tex]= -73

a + 27d = -73 .......(ii)

Subtracting (i) and (ii)

a + 16 d - a - 27 d = - 40 + 73

-11d = 33

d = -3

a = -40 - 16d = -40 - 16(-3) = 8

[tex]a_n[/tex] = 8 + (n-1)-3

= 8 -3n +3

= -3n + 11

Hence recursive formula :

[tex]a_n[/tex]= -3n + 11

Answer:

[tex]a_n=-3n+11[/tex]

Step-by-step explanation:

We are given the values of two terms in this arithmetic sequence: [tex]a_{17}=-40[/tex] and [tex]a_{28}=-73[/tex]. We want to find the recursive formula of this sequence, which will be in the form [tex]a_n=a_1+d(n-1)[/tex], where [tex]a_1[/tex] is the first term and d is the common difference.

Here, we can pretend that [tex]a_{17}[/tex] will replace the [tex]a_1[/tex] term, while [tex]a_{28}[/tex] replaces the [tex]a_n[/tex] term. This way, n becomes 28 and 1 becomes 17. Now, we can write:

[tex]a_n=a_1+d(n-1)[/tex]

[tex]a_{28}=a_{17}+d(28-17)[/tex]

Substitute in the values we know:

[tex]a_{28}=a_{17}+d(28-17)[/tex]

[tex]-73=-40+d(28-17)[/tex]

Solve for d:

[tex]-73=-40+d(28-17)[/tex]

[tex]-73=-40+d(11)[/tex]

11d = -33

d = -3

Now, we need to find our first term. We can do this by replacing [tex]a_n[/tex] with [tex]a_{28}[/tex] again, but this time, we're actually going to use [tex]a_1[/tex]:

[tex]a_{28}=a_1+d(28-1)[/tex]

Plug in the values we know:

[tex]a_{28}=a_1+d(28-1)[/tex]

[tex]-73=a_1-3(27)[/tex]

Solve for [tex]a_1[/tex]:

-73 = [tex]a_1[/tex] - 81

[tex]a_1[/tex] = 8

Put these altogether:

[tex]a_n=8-3(n-1)=-3n+11[/tex]

Thus, the recursive formula is [tex]a_n=-3n+11[/tex].