Respuesta :

Answer:

[tex]\frac{\sqrt[3]{16y^4}}{x^2}[/tex]

Step-by-step explanation:

The options are missing; However, I'll simplify the given expression.

Given

[tex]\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }[/tex]

Required

Write Equivalent Expression

To solve this expression, we'll make use of laws of indices throughout.

From laws of indices [tex]\sqrt[n]{a} = a^{\frac{1}{n}}[/tex]

So,

[tex]\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }[/tex] gives

[tex]\frac{(32x^3y^6)^{\frac{1}{3}}}{(2x^9y^2)^\frac{1}{3}}[/tex]

Also from laws of indices

[tex](ab)^n = a^nb^n[/tex]

So, the above expression can be further simplified to

[tex]\frac{(32^\frac{1}{3}x^{3*\frac{1}{3}}y^{6*\frac{1}{3}})}{(2^\frac{1}{3}x^{9*\frac{1}{3}}y^{2*\frac{1}{3}})}[/tex]

Multiply the exponents gives

[tex]\frac{(32^\frac{1}{3}x*y^{2})}{(2^\frac{1}{3}x^{3}*y^{\frac{2}{3}})}[/tex]

Substitute [tex]2^5[/tex] for 32

[tex]\frac{(2^{5*\frac{1}{3}}x*y^{2})}{(2^\frac{1}{3}x^{3}*y^{\frac{2}{3}})}[/tex]

[tex]\frac{(2^{\frac{5}{3}}x*y^{2})}{(2^\frac{1}{3}x^{3}*y^{\frac{2}{3}})}[/tex]

From laws of indices

[tex]\frac{a^m}{a^n} = a^{m-n}[/tex]

This law can be applied to the expression above;

[tex]\frac{(2^{\frac{5}{3}}x*y^{2})}{(2^\frac{1}{3}x^{3}*y^{\frac{2}{3}})}[/tex] becomes

[tex]2^{\frac{5}{3}-\frac{1}{3}}x^{1-3}*y^{2-\frac{2}{3}}[/tex]

Solve exponents

[tex]2^{\frac{5-1}{3}}*x^{-2}*y^{\frac{6-2}{3}}[/tex]

[tex]2^{\frac{4}{3}}*x^{-2}*y^{\frac{4}{3}}[/tex]

From laws of indices,

[tex]a^{-n} = \frac{1}{a^n}[/tex]; So,

[tex]2^{\frac{4}{3}}*x^{-2}*y^{\frac{4}{3}}[/tex] gives

[tex]\frac{2^{\frac{4}{3}}*y^{\frac{4}{3}}}{x^2}[/tex]

The expression at the numerator can be combined to give

[tex]\frac{(2y)^{\frac{4}{3}}}{x^2}[/tex]

Lastly, From laws of indices,

[tex]a^{\frac{m}{n} = \sqrt[n]{a^m}[/tex]; So,

[tex]\frac{(2y)^{\frac{4}{3}}}{x^2}[/tex] becomes

[tex]\frac{\sqrt[3]{(2y)}^{4}}{x^2}[/tex]

[tex]\frac{\sqrt[3]{16y^4}}{x^2}[/tex]

Hence,

[tex]\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }[/tex] is equivalent to [tex]\frac{\sqrt[3]{16y^4}}{x^2}[/tex]

Answer is = [tex]\frac{2y}{x^{2}}\sqrt[3]{2y}[/tex]

We first take them all under the cube root sign, then simplify the inside.

We'll use the properties of exponents to simplify.

[tex]\frac{\sqrt[3]{32x^{3}y^{6}}}{\sqrt[3]{2x^{9}y^{2}}}\\=\sqrt[3]{\frac{32x^{3}y^{6}}{2x^{9}y^{2}}}\\=\sqrt[3]{\frac{16y^{\left(6-2\right)}}{x^{\left(9-3\right)}}}\\=\sqrt[3]{\frac{16y^{4}}{x^{6}}}\\=\sqrt[3]{\frac{2^{4}y^{4}}{x^{6}}}\\=\sqrt[3]{\frac{2^{3}y^{3}\cdot2y}{\left(x^{2}\right)^{3}}}\\=\frac{2y}{x^{2}}\sqrt[3]{2y}[/tex]

Learn more: https://brainly.com/question/8806877