Respuesta :

The sequence

1, 3, 7, 13, 21, ...

has first-order differences

2, 4, 6, 8, ...

Let [tex]a_n[/tex] denote the original sequence, and [tex]b_n[/tex] the sequence of first-order differences. It's quite clear that

[tex]b_n=2n[/tex]

for [tex]n\ge1[/tex]. By definition of first-order differences, we have

[tex]b_n=a_{n+1}-a_n[/tex]

for [tex]n\ge1[/tex], or

[tex]a_{n+1}=a_n+2n[/tex]

By substitution, we have

[tex]a_n=a_{n-1}+2(n-1)[/tex]

[tex]\implies a_{n+1}=(a_{n-1}+2(n-1))+2n[/tex]

[tex]\implies a_{n+1}=a_{n-1}+2(n+(n-1))[/tex]

[tex]a_{n-1}=a_{n-2}+2(n-2)[/tex]

[tex]\implies a_{n+1}=(a_{n-2}+2(n-2))+2(n+(n-1))[/tex]

[tex]\implies a_{n+1}=a_{n-2}+2(n+(n-1)+(n-2))[/tex]

and so on, down to

[tex]a_{n+1}=a_1+2(n+(n-1)+\cdots+2+1)[/tex]

You should know that

[tex]1+2+\cdots+(n-1)+n=\dfrac{n(n+1)}2[/tex]

and we're given [tex]a_1=1[/tex], so

[tex]a_{n+1}=1+n(n+1)=n^2+n+1[/tex]

or

[tex]a_n=(n-1)^2+(n-1)+1\implies\boxed{a_n=n^2-n+1}[/tex]

Alternatively, since we already know the sequence is supposed to be quadratic, we can look for coefficients [tex]a,b,c[/tex] such that

[tex]a_n=an^2+bn+c[/tex]

We have

[tex]a_1=a+b+c=1[/tex]

[tex]a_2=4a+2b+c=3[/tex]

[tex]a_3=9a+3b+c=7[/tex]

and we can solve this system for the 3 unknowns to find [tex]a=1,b=-1,c=1[/tex].