Respuesta :
Answer:40.5 ft
Step-by-step explanation:
Given
[tex]\angle V=90^{\circ}[/tex]
[tex]\angle T=26^{\circ}[/tex]
[tex]VT=83\ ft[/tex]
from the figure we can write as
[tex]\tan 26^{\circ}=\dfrac{UV}{VT}[/tex]
[tex]\tan 26^{\circ}=\dfrac{UV}{83}[/tex]
[tex]\Rightarrow UV=83\times \tan 26^{\circ}[/tex]
[tex]\Rightarrow UV=40.48\ ft\approx 40.5\ ft[/tex]

Answer:
Length of UV = 40.5 feet
Step-by-step explanation:
In the figure attached,
We will apply sine rule in ΔTUV,
[tex]\frac{SinT}{UV}=\frac{SinU}{TV}[/tex]
m∠T + m∠V + m∠U = 180°
26° + 90° + m∠U = 180°
m∠U = 180 - 116
m∠U = 64°
Now we put the values in sine rule,
[tex]\frac{Sin26}{UV}=\frac{Sin64}{83}[/tex]
UV = [tex](\frac{Sin26}{Sin64})\times 83[/tex]
UV = 40.48
≈ 40.5 feet
Therefore, length of UV will be 40.5 feet.
