Will give brainliest and 40 points. Just last question C needed, c) Use the graph to find the two x values.

Answer:
a) Complete the table of values for [tex]y=x^2+x-4[/tex]
[tex]y=(-3)^2+(-3)-4\\y=9-7\\y=2[/tex]
[tex]y=(-2)^2+(-2)-4\\y=4-6\\y=-2[/tex]
[tex]y=(-1)^2+(-1)-4\\y=1-5\\y=-4[/tex]
[tex]y=(0)^2+(0)-4\\y=-4[/tex]
[tex]y=(1)^2+(1)-4\\y=1-3\\y=-2[/tex]
[tex]y=(2)^2+(2)-4\\y=4-2\\y=2[/tex]
[tex]y=(3)^2+(3)-4\\y=9-1\\y=8[/tex]
b)
[tex]y=x^2+x-4[/tex]
x-intercepts is when y = 0.
[tex]0=x^2+x-4[/tex]
Using Quadratic Formula:
[tex]$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$x=\frac{-1\pm \sqrt{1^2-4\cdot \:1\left(-4\right)}}{2\cdot \:1}$[/tex]
[tex]$x=\frac{-1+\sqrt{17}}{2\cdot \:1}$[/tex]
[tex]$x_{1}=\frac{-1+\sqrt{17}}{2}\\$[/tex]
[tex]$\:x_{2}=\frac{-1-\sqrt{17}}{2}$[/tex]
Taking [tex]$x_{1}=\frac{-1+\sqrt{17}}{2}\\$[/tex]
[tex]x_{1}\approx 1.56[/tex]
Therefore it is B.
c)
Approximations:
[tex]x_{1}\approx 1.56[/tex]
[tex]x_{2}\approx -2.56[/tex]
Exact values:
[tex]$x_{1}=\frac{-1+\sqrt{17}}{2}\\$[/tex]
[tex]$\:x_{2}=\frac{-1-\sqrt{17}}{2}$[/tex]