Find the limit by rewriting the fraction first. ModifyingBelow lim With font size decreased by 1 ModifyingBelow (x comma y )right arrow (4 comma negative 16 )With y not equals minus 16 comma x not equals x squared StartFraction y plus 16 Over x squared y minus xy plus 16 x squared minus 16 x EndFraction

Respuesta :

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The limit is  [tex]\lim_{{(y)}\to {{-36)}} [\frac{1}{(30 } ] = \frac{1}{30}[/tex]

Step-by-step explanation:

The given limit equation is  

     [tex]\lim_{{(x,y)}\to {(6,-36)}} [\frac{y -36}{x^2 y -xy + 36x^2 - 36x} ][/tex]

So as     [tex]x \to 6[/tex]

     [tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(6)^2 y -(6)y + 36*(6)^2 - 36(6)} ][/tex]

      [tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(36 y - 6y + 36(30)} ][/tex]

      [tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(30 (y -36)} ][/tex]

      [tex]\lim_{{(y)}\to {{-36)}} [\frac{1}{(30 } ] = \frac{1}{30}[/tex]

Ver imagen okpalawalter8