Complete Question
The complete question is shown on the first uploaded image
Answer:
The limit is [tex]\lim_{{(y)}\to {{-36)}} [\frac{1}{(30 } ] = \frac{1}{30}[/tex]
Step-by-step explanation:
The given limit equation is
[tex]\lim_{{(x,y)}\to {(6,-36)}} [\frac{y -36}{x^2 y -xy + 36x^2 - 36x} ][/tex]
So as [tex]x \to 6[/tex]
[tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(6)^2 y -(6)y + 36*(6)^2 - 36(6)} ][/tex]
[tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(36 y - 6y + 36(30)} ][/tex]
[tex]\lim_{{(y)}\to {{-36)}} [\frac{y -36}{(30 (y -36)} ][/tex]
[tex]\lim_{{(y)}\to {{-36)}} [\frac{1}{(30 } ] = \frac{1}{30}[/tex]