Answer:
Option (3). (5, 9.2)
Step-by-step explanation:
If Point P divides the line segment QR in the ratio of m : n.
Let the coordinates of the point P are (x, y)
Since coordinates of the point P are given by,
x = [tex]\frac{m(x_2)+n(x_1)}{m+n}[/tex]
y = [tex]\frac{m(y_2)+n(y_1)}{m+n}[/tex]
Where [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] are the ordered pairs representing points Q and R.
If [tex](x_1,y_1)[/tex] represents (2, 5) and [tex](x_2,y_2)[/tex] represents (7, 12),
Coordinates of point P(x, y) which divides the segment in the ratio of 3:2.
x = [tex]\frac{3(7)+2(2)}{3+2}[/tex]
x = [tex]\frac{25}{5}=5[/tex]
y = [tex]\frac{3(12)+2(5)}{3+2}[/tex]
y = [tex]\frac{46}{5}=9.2[/tex]
Therefore, Point P will be represented by (5, 9.2)
Option (3) will be the answer.