Answer:
[tex]p(x,y) = (-2.6 ,2.4)[/tex]
Step-by-step explanation:
Given
a(-5,4) and b(7,-4)
Required
Partition P
Given that the segment ab is divided into ratio;
The coordinates of point p can be calculated using ratio formula given below
[tex]p(x,y) = (\frac{mx_2 + nx_1}{m+n} ,\frac{my_2 + ny_1}{m+n})[/tex]
Where m and n are the ratio; m = 1 and n = 4
[tex](x_1, y_1) = (-5,4); \\(x_2, y_2) = (7,-4)[/tex]
So,
[tex]p(x,y) = (\frac{mx_2 + nx_1}{m+n} ,\frac{my_2 + ny_1}{m+n})[/tex] becomes
[tex]p(x,y) = (\frac{1 *7 + 4 * -5}{1+4} ,\frac{1 * -4 + 4 * 4}{1+4})[/tex]
[tex]p(x,y) = (\frac{7 + -20}{5} ,\frac{-4 + 16}{5})[/tex]
[tex]p(x,y) = (\frac{-13}{5} ,\frac{12}{5})[/tex]
[tex]p(x,y) = (-2.6 ,2.4)[/tex]
Hence, the coordinates of p are (-2.6,2.4)