Answer:
The value of x is 2 and y is 10.
Step-by-step explanation:
First, you have to do cross multiplications of any 2 fractions :
1st equation,
[tex] \frac{x + 2}{3} = \frac{y - 2}{4} [/tex]
[tex]4(x - 3) = 3(y - 2)[/tex]
[tex]4x + 8 = 3y - 6[/tex]
2nd equation,
[tex] \frac{y - 2}{4} = \frac{y - x}{3} [/tex]
[tex]4(y - x) = 3(y - 2)[/tex]
[tex]4y - 4x = 3y - 6[/tex]
Next, you have to solve the simultaneous equation by elimination :
[tex]4x - 3y = - 14 - - - (1)[/tex]
[tex] - 4x + y = - 6 - - - (2)[/tex]
[tex](1) + (2)[/tex]
[tex]4x - 3y + ( - 4x) + y = - 14 + ( - 6)[/tex]
[tex] - 2y = - 20[/tex]
[tex]y = 10[/tex]
[tex]substitute \: y = 10 \: into \: (1)[/tex]
[tex]4x - 3(10) = - 14[/tex]
[tex]4x - 30 = - 14[/tex]
[tex]4x = - 14 + 30[/tex]
[tex]4x = 16[/tex]
[tex]x = 4[/tex]