Respuesta :
Answer:
9.29 N . . . . weight of 0.948 kg sphere
Explanation:
The sum of torques on the link BOA is zero, so we have ...
(right force at A)(OA) = (up force at B)(OB·sin(135°))
Solving for the force at B, we have ...
up force at B = (10.53 N)(253 mm)/((553 mm)/√2) ≈ 6.81301 N
This force is due to the difference between the buoyant force on the float sphere and the weight of the float sphere. Dividing by the acceleration due to gravity, it translates to the difference in mass between the water displaced and the mass of the sphere.
∆mass = (6.81301 N)/(9.8 m/s^2) = 0.695205 kg
__
The center of the sphere of diameter 0.1553 m is below the waterline by ...
(553 mm)cos(45°) -(353 mm) = 38.0300 mm
The volume of the spherical cap of radius 155.3/2 = 77.65 mm and height 77.65+38.0300 = 115.680 mm can be found from the formula ...
V = (π/3)h^3(3r -h) = (π/3)(115.680^2)(3·77.65 -115.68) mm^3 ≈ 1.64336 L
So the mass of water contributing to the buoyant force is 1.64336 kg. For the net upward force to correspond to a mass of 0.695305 kg, the mass of the float sphere must be ...
1.64336 kg -0.695205 kg ≈ 0.948 kg
The weight of the float sphere is then (9.8 m/s^2)·(0.948 kg) = 9.29 N
The weight of the 0.948 kg float sphere is about 9.29 N.

