write a function based on the given parent function and transformations in the given order
parent function y=x^2
shift 2 units to the right
reflect over the x-axis
shift downward 4 units

Respuesta :

Answer:

[tex]y=-\left(x-2\right)^{2}-4[/tex] is the resultant function after transformations.

Step-by-step explanation:

Parent function is given as:

[tex]y=x^2[/tex] (Graph 1 in attachments, it is a parabola)

Let us apply the transformations step by step:

1. Shift 2 units to the right i.e.

change the value of [tex]x[/tex] by 2.

The equation of a parabola can be: [tex]y=(x-a)^2[/tex] where [tex]a[/tex] is the point on x axis which is the axis of symmetry.

Right side means the equation becomes:

[tex]y=(x-2)^2[/tex]  (Graph 2 in attachments)

2. Reflect over x axis i.e.

change the sign of y from + to -.

[tex]y=-(x-2)^2[/tex] (Graph 3 in attachments)

3. Shift downward 4 units i.e.

Subtract 4 from the value of y:

[tex]y=-(x-2)^2-4[/tex] (Graph 4 in attachments)

Ver imagen isyllus
Ver imagen isyllus
Ver imagen isyllus
Ver imagen isyllus