∠1and ​∠2​ are a linear pair, and ​∠2​ and ​∠3​ are vertical angles. m∠1=(3y+10)∘ and ​m∠3=(5y−30)∘. What is m∠2?

Respuesta :

Answer:

[tex]m\angle 2=95^{\circ}[/tex]

Step-by-step explanation:

It is given that ∠1 and ​∠2​ are a linear pair. So, there sum is 180 degrees.

[tex]m\angle 1+m\angle 2=180^{\circ}[/tex]    ...(1)

∠2​ and ​∠3​ are vertical angles. So, both are equal.

[tex]m\angle 2=m\angle 3[/tex]     ...(2)

From (1) and (2), we get

[tex]m\angle 1+m\angle 3=180^{\circ}[/tex]

Substitute [tex]m\angle 1=(3y+10)^{\circ}[/tex] and [tex]m\angle 3=(5y-30)^{\circ}[/tex] in the above equation.

[tex](3y+10)^{\circ}+(5y-30)^{\circ}=180^{\circ}[/tex]

[tex](8y-20)^{\circ}=180^{\circ}[/tex]

[tex]8y-20=180[/tex]

[tex]8y=180+20[/tex]

Divide both sides by 8.

[tex]y=\dfrac{200}{8}[/tex]

[tex]y=25[/tex]

The value of y is 25.

Using equation (2), we get

[tex]m\angle 2=m\angle 3=(5y-30)^{\circ}[/tex]

Substitute y=25.

[tex]m\angle 2=(5(25)-30)^{\circ}[/tex]

[tex]m\angle 2=(125-30)^{\circ}[/tex]

[tex]m\angle 2=95^{\circ}[/tex]

Therefore, [tex]m\angle 2=95^{\circ}[/tex].