Respuesta :
Answer:
Explanation:
Consider the outer surface of the roof to be [tex]T_{out}[/tex]
Since, the heat conducted is equal to the sum of the heat transferred through convection and the rest by radiation
[tex]Q_{cond}=Q_{rad}+Q_{conv}[/tex]
Rewrite the equation as follows
[tex]kA_s\frac{\Delta T}{L} =\epsilon \sigma A_s(T_s^4-T_{\infty}^4)+hA_s \Delta T\\\\k\frac{\Delta T}{L} =\epsilon \sigma (T_s^4-T_{\infty}^4)+h \Delta T[/tex]
[tex]k\frac{T_{in}-T_{out}}{L} =\epsilon \sigma (T_{out}^4-T_{rad}^4)+h(T_{out}-T_{\infty})[/tex]
subsititute
k = 2 W/m
[tex]15^o C=T_{in}[/tex]
0.22 for L
[tex]0.9 = \epsilon[/tex]
[tex]5.67\times 10^{-8}W/m^2.K^4=\sigma[/tex]
[tex]255=T_{rad}[/tex]
[tex]15W/m^2.K = h[/tex]
[tex]10^oC=T_{\infty}[/tex]
[tex]2\times \frac{15 -T_{out}}{0.22} =[0.9\times(5.67\times10^-^8)\times((T_{out}+273)^4-255^4)]+[15\times(T_{out}-10)]\\\\T_{out}=7.7^oC[/tex]
Hence, the temperature of outer surface of the roof is [tex]T_{out}=7.7^oC[/tex]
Calculate the surface area of the roof
[tex]A_s=b\times l[/tex]
Here, b is the width , l is the length
substitute 15 for b , 20 for l
[tex]A_s=15 \times 20\\\\=300m^2[/tex]
Write the equation for conduction
[tex]Q_{cond}=kA_s\frac{\Delta T}{L}[/tex]
substitute 2W/m.K for k
[tex]300m^2 \ \ for \ A_s\\\\(15-7.7)^oC \ \ for \ \Delta T\\\\0.22m \ for \ L[/tex]
[tex]Q_{cond}=2\times 300 \times \frac{15-7.7}{0.22}\\\\=19,000[/tex]
Therefore, the total heat transferred through conduction is [tex]Q_{cond}=19,9009W[/tex]
Consider the amount of natural gas required be R and the cost incurred in running the furnace through the night be M
[tex]R=\frac{Q_{cond}}{0.85} \times T[/tex]
Duration of time T = 14 x 3600s
[tex]R=\frac{19909\times(14\times3600)}{0.85}kJ\\\\= \frac{19909\times(14\times3600)}{0.85\times105500}therm\\\\=11.2 \ therm[/tex]
And the required money for the gas M = 11.2 x $1.2
= $13.44
Therefore, the money lost through the roof due to the heat transfer M=$13.44