Answer:
[tex]\text{As } x \to \infty, y \to \infty,$and as x \to -\infty, y \to \infty[/tex]
Step-by-step explanation:
Given the polynomial function: [tex]h(x)=-x^3+x^4-2x+1[/tex]
To examine its end behavior, we create a table of values that we can then examine.
[tex]\left|\begin{array}{c|c}x&h(x)\\--&--\\-4&329\\-3&115\\-2&29\\-1&5\\0&1\\1&-1\\2&5\\3&49\\4&185\end{array}\right|[/tex]
From the table, we see a repeating pattern of positive values of h(x) with h(1)=-1 being an axis of symmetry.
Therefore, as:
[tex]x \to \infty, h(x) \to \infty\\x \to -\infty, h(x) \to \infty[/tex]