Answer:
a)123.37 mW
b) 58.75 mJ
Explanation:
a) The current (i) flowing through the terminal is given as:
[tex]i=\frac{dq}{dt} \\i=\frac{d(5sin(4\pi t)}{dt} =20\pi cos(4\pi t)\ mA\\[/tex]
The Power delivered to the element (P(t)) is given as:
[tex]P(t)=v(t)i(t)= 3 cos(4\pi t)*20\pi cos(4\pi t)*10^{-3}\\P(t)=60\pi cos^2(4\pi t)*10^{-3}\\at \ t \ =\ 0.3s,\ the \ power\ delivered\ is:\\P(0.3) = 60\pi cos^2(4\pi *0.3)*10^{-3}=123.37mW[/tex]
b) the energy delivered to the element (W) between 0 and 0.6 s is given as:
[tex]W = \int\limits^0_{0.6} {P(t)} \, dt \\W=\int\limits^0_{0.6} {60\pi cos^{2}(4\pi t)} \, dt =58.75mJ[/tex]