Answer:
The answer to this question can be defined as follows:
In part (i), the answer is "option d".
In part (ii), the answer is "option 2".
Step-by-step explanation:
Given:
Part (a)
[tex]\Rightarrow \bold{\frac{x^2+x-20}{x-4}=x+5}\\\\[/tex]
Solve the above equation:
[tex]\Rightarrow x^2+x-20=(x+5)(x-4)\\\\\Rightarrow x^2+x-20=(x^2-4x+5x-20)\\\\\Rightarrow x^2+x-20=x^2-4x+5x-20\\\\\Rightarrow \boxed{x^2+x-20=x^2+x-20}\\[/tex]
Given:
Part (b)
[tex]\Rightarrow \bold{ \lim_{x \to \3} \frac{x^2+x-12}{x-3}= \lim_{x \to 3} (x+4)}\\\\[/tex]
Solve the above equation:
factor of [tex]\Rightarrow x^2+x-20 =(x-3)(x+4)[/tex]
[tex]\Rightarrow \lim_{x \to \3} \frac{(x-3)(x+4)}{x-3}= \lim_{x \to 3} (x+4)\\\\\Rightarrow \lim_{x \to \3} (x+4)= \lim_{x \to 3} (x+4)\\\\[/tex]
apply limit value:
[tex]\Rightarrow (3+4)= (3+4)\\\\\Rightarrow 7= 7[/tex]