The population P of a culture of Pseudomonas aeruginosa bacteria is given by P = −1718t2 + 82,000t + 10,000, where t is the time in hours since the culture was started. Determine the time(s) at which the population was 600,000. Round to the nearest hour.

Respuesta :

Answer:

Rounding to the nearest hour, the times at which the population was 600,000 was at 9 hours and at 39 hours.

Step-by-step explanation:

Determine the time(s) at which the population was 600,000.

This is t for which P(t) = 600000. To do this, we solve a quadratic equation.

Solving a quadratic equation:

Given a second order polynomial expressed by the following equation:

[tex]ax^{2} + bx + c, a\neq0[/tex].

This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

In this question:

[tex]P(t) = -1718t^{2} + 82000t + 10000[/tex]

We have to find t for which P(t) = 600000. Then

[tex]600000 = -1718t^{2} + 82000t + 10000[/tex]

[tex]-1718t^{2} + 82000t - 590000 = 0[/tex]

So [tex]a = -1718, b = 82000, c = -590000[/tex]

Then

[tex]\bigtriangleup = 82000^{2} - 4*(-1718)*(-590000) = 2669520000[/tex]

[tex]t_{1} = \frac{-82000 + \sqrt{2669520000}}{2*(-1718)} = 8.8[/tex]

[tex]t_{2} = \frac{-82000 - \sqrt{2669520000}}{2*(-1718)} = 38.9[/tex]

Rounding to the nearest hour, the times at which the population was 600,000 was at 9 hours and at 39 hours.