Given: AB || DE , AD bisects BE.
Prove: ABC = DEC using the ASA postulate.

Answer:
As per ASA postulate, the two triangles are congruent.
Step-by-step explanation:
We are given two triangles:
[tex]\triangle ABC[/tex] and [tex]\triangle DEC[/tex].
AD bisects BE.
AB || DE.
Let us have a look at two properties.
1. When two lines are parallel and a line intersects both of them, then alternate angles are equal.
i.e. AB || ED and [tex]\angle B[/tex] and [tex]\angle E[/tex] are alternate angles [tex]\Rightarrow[/tex] [tex]\angle B = \angle E[/tex].
2. When two lines are cutting each other, angles formed at the crossing of two, are known as Vertically opposite angles and they are are equal.
[tex]\Rightarrow \angle ACB = \angle DCE[/tex]
Also, it is given that AD bisects BE.
i.e. EC = CB
1. [tex]\angle B = \angle E[/tex]
2. EC = CB
3. [tex]\angle ACB = \angle DCE[/tex]
So, we can in see that in [tex]\triangle ABC[/tex] and [tex]\triangle DEC[/tex], two angles are equal and side between them is also equal to each other.
Hence, proved that [tex]\triangle ABC[/tex] [tex]\cong[/tex] [tex]\triangle DEC[/tex].