Respuesta :

Answer:

Step-by-step explanation:

Hello,

qop(2)=q(p(2))

p(2) = 4+3=7

[tex]q(7) = \sqrt{7+2}=\sqrt{9}=3[/tex]

so

qop(2)=3

and poq(2)=p(q(2))

[tex]q(2)=\sqrt{2+2} = \sqrt{4}=2[/tex]

p(2) = 7

so poq(2)=7

thanks

The answer is "[tex]\bold{(q \circ p)(2)= 3}\ and \ \bold{(p \circ q)(2)=7}[/tex]" and the further explanation can be defined as follows;

Given:

[tex]\to \bold{p(x)=x^2+3}\\\\\to \bold{q(x)=\sqrt{x+2}}[/tex]

Find:

[tex]\bold{(q \circ p)(2)=?}\\\\\bold{(p \circ q)(2)=?}[/tex]

Solve the value for [tex]\bold{(q \circ p)(2)}\\\\[/tex]:

[tex]\to \bold{(q \circ p)(2)= q \circ p(2) =q(p(2))}\\\\[/tex]

[tex]\therefore\\\\ \to \bold{p(2)=2^2+3= 4+3=7}\\\\\ \because \\\\ \to \bold{q(p(2))=\sqrt{7+2}=\sqrt{9}=3}[/tex]

Solve the value for [tex]\bold{(p \circ q)(2)}\\\\[/tex]:

[tex]\to \bold{(p \circ q)(2)= p \circ q(2)= p (q(2))}\\\\[/tex]

[tex]\therefore\\\\ \to \bold{q(2)=\sqrt{2+2}=\sqrt{4}=2}\\\\\ \because \\\\ \to \bold{p(q(2))=2^2+3= 4+3=7}[/tex]

Therefore the final answer of "[tex]\bold{(q \circ p)(2)= 3}\ and \ \bold{(p \circ q)(2)=7}[/tex]"

Learn more:

brainly.com/question/14270968