Respuesta :

Answer:

[tex]572.96\:cm^2[/tex]

Step-by-step explanation:

Perimeter of the semi-circle:

[tex]\frac{\pi d}{2}[/tex]

[tex]60=\frac{\pi d}{2}[/tex]

[tex]120=\pi d[/tex]

[tex]\frac{120}{\pi } =d[/tex]

[tex]d=38.197186[/tex]

Area of the semi-circle:

[tex]\frac{\pi r^{2} }{2}[/tex]

[tex]r=d/2\\r=38.197186/2\\r=19.098593[/tex]

[tex]\frac{\pi \times 19.098593^{2} }{2}[/tex]

[tex]=572.957785[/tex]

Circumference = 2πr

Circumference of a semicircle = πr

We need to find r. Given that the perimeter is 60 cm:

60 = π r

60 = 3.14r

60 ÷ 3.14 = r

19.11 = r

Area = πr²

Area = (3.14)(19.11)²

Area = (3.14)(365.19)

Area ≈ 1146.7 cm²

Divide by two since it's a semicircle:

1146.7 ÷ 2 = 573.35 cm²

Area of the semicircle measures about 573.35 cm²