Respuesta :
Answer:
[tex]572.96\:cm^2[/tex]
Step-by-step explanation:
Perimeter of the semi-circle:
[tex]\frac{\pi d}{2}[/tex]
[tex]60=\frac{\pi d}{2}[/tex]
[tex]120=\pi d[/tex]
[tex]\frac{120}{\pi } =d[/tex]
[tex]d=38.197186[/tex]
Area of the semi-circle:
[tex]\frac{\pi r^{2} }{2}[/tex]
[tex]r=d/2\\r=38.197186/2\\r=19.098593[/tex]
[tex]\frac{\pi \times 19.098593^{2} }{2}[/tex]
[tex]=572.957785[/tex]
Circumference = 2πr
Circumference of a semicircle = πr
We need to find r. Given that the perimeter is 60 cm:
60 = π r
60 = 3.14r
60 ÷ 3.14 = r
19.11 = r
Area = πr²
Area = (3.14)(19.11)²
Area = (3.14)(365.19)
Area ≈ 1146.7 cm²
Divide by two since it's a semicircle:
1146.7 ÷ 2 = 573.35 cm²
Area of the semicircle measures about 573.35 cm²