A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days

Respuesta :

Answer:

[tex] y =y_o e^{kt}[/tex]

Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.

For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:

[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]

And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235

Step-by-step explanation:

We can assume that the following model can be used:

[tex] y =y_o e^{kt}[/tex]

Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.

For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:

[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]

And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235