Calculate the coefficient of determination for the following data set. Round your answer to three decimal places. ACT Scores and College GPAs ACT Score, x College GPA, y 16 1.85 18 2.20 24 2.80 25 3.50 34 4.00 27 3.18 29 3.90 25 2.90 30 4.00 21 2.60 17 2.50 21 3.65 28 3.10 31 3.72 35 3.24 18 2.30 17 1.70 26 3.10 28 3.50 23 2.76

Respuesta :

Answer:

n=20 [tex] \sum x = 493, \sum y = 60.5, \sum xy= 1553.01, \sum x^2 =12775, \sum y^2 =192.021[/tex]  

And in order to calculate the correlation coefficient we can use this formula:

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]

[tex]r=\frac{20(1553.01)-(493)(60.5)}{\sqrt{[20(12775) -(493)^2][20(192.021) -(60.5)^2]}}=0.8237[/tex]

And then the determination coeffcient would be:

[tex] r^2 = 0.8237^2= 0.6785 \approx 0.679[/tex]

Step-by-step explanation:

College GPAs ACT Score, x

16 18 24  25  34  27  29  25  30  21  17  21  28  31  35  18  17  26  28 23

College GPA, y

1.85  2.20  2.80  3.50  4.00  3.18  3.90  2.90  4.00  2.60  2.50  3.65  3.10  3.72  3.24  2.30  1.70  3.10  3.50  2.76

From the info given we can calculate the following sums:

n=20 [tex] \sum x = 493, \sum y = 60.5, \sum xy= 1553.01, \sum x^2 =12775, \sum y^2 =192.021[/tex]  

And in order to calculate the correlation coefficient we can use this formula:

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]

[tex]r=\frac{20(1553.01)-(493)(60.5)}{\sqrt{[20(12775) -(493)^2][20(192.021) -(60.5)^2]}}=0.8237[/tex]

And then the determination coeffcient would be:

[tex] r^2 = 0.8237^2= 0.6785 \approx 0.679[/tex]