Answer:
Option B.
Step-by-step explanation:
The given exponential equation is
[tex]y=ab^x[/tex] ...(1)
It is given that the graph of above equation passes through points (−3, 24) and (−2, 12).
The graph passes through the point (-3,24), so substitute x=-3 and y=24 in equation (1).
[tex]24=ab^{-3}[/tex] ...(2)
The graph passes through the point (-2,12), so substitute x=-2 and y=12 in equation (1).
[tex]12=ab^{-2}[/tex] ...(3)
Divide equation (3) by equation (2).
[tex]\dfrac{12}{24}=\dfrac{ab^{-2}}{ab^{-3}}[/tex]
[tex]0.5=b[/tex]
Substitute b=0.5 in equation (2).
[tex]24=a(0.5)^{-3}[/tex]
[tex]24=\dfrac{a}{(0.5)^{3}}[/tex]
[tex]24=\dfrac{a}{0.125}[/tex]
[tex]24\times 0.125=a[/tex]
[tex]3=a[/tex]
Substitute a=3 and b=0.5 in equation (1).
[tex]y=3(0.5)^x[/tex]
Therefore, the correct option is B.