Respuesta :

Answer:

The  recursive formula for the given sequence

                 [tex]t_{n}= (2)^{n+2}[/tex]

Step-by-step explanation:

Explanation:-

Given sequence is 8 , 16, 32, 64 ,.....

First term is   a = 8

common ratio   [tex]r = \frac{16}{8} =2[/tex]

                       [tex]r = \frac{32}{16} =2[/tex]

                      [tex]r = \frac{64}{32} =2[/tex]   and so on..

Given sequence of the common ratio 'r' is equal

The [tex]n^{th}[/tex] term of the sequence

                   [tex]t_{n} = a r^{n-1}[/tex]

                   [tex]t_{n}= 8 (2)^{n-1}[/tex]

                   [tex]t_{n}= (2)^{(3+n-1)}[/tex]

                  [tex]t_{n}= (2)^{n+2}[/tex]

This is  recursive formula for the given sequence

                 [tex]t_{n}= (2)^{n+2}[/tex]

Verification:-

           [tex]t_{n}= (2)^{n+2}[/tex]

put n=1   ⇒ t₁ = 8

put n=2   ⇒ t₂ = 16

put n=3   ⇒ t₃ = 32

put n=4   ⇒ t₄= 64    

and so on..

The sequence  8 ,16 , 32 , 64 ....