Answer:
65 m/h
Explanation:
Let the distance of the car moving south be y.
Let the distance of the car moving west be x.
Let the distance between the two cars be a.
These three distances can be represented as a right angled triangle. So we can say:
[tex]a^2 = x^2 + y ^2[/tex]
Let us differentiate with respect to time, since the distances are changing with respect to time:
[tex]2a\frac{da}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} \\\\=>a\frac{da}{dt} = x\frac{dx}{dt} + y\frac{dy}{dt}[/tex]__________(1)
da/dt = rate of change of distance between two cars
The speed of the car moving south (dy/dt) is 60 m/h and the speed of the car moving west (dx/dt) is 25 m/h.
Therefore:
dy/dt = 60 m/h and dx/dt = 25 m/h
After two hours, the distance of the two cars will be:
y = 2 * 60 = 120 miles
x = 2 * 25 = 50 miles
Therefore:
[tex]a^2 = 50^2 + 120^2\\\\a^2 = 2500 + 14400 = 16900\\\\a = \sqrt{16900}\\ \\a = 130 miles[/tex]
From (1):
130(da/dt) = 50(25) + 120(60)
130(da/dt) = 1250 + 7200 = 8450
da/dt = 8450/130 = 65 m/h
Therefore, after two hours, the distance between the two cars is changing at a rate of 65 m/h.