Answer:
The 98% confidence interval for the mean waste recycled per person per day for the population of Washington
(1.2878 ,1.9122)
Step-by-step explanation:
Step(i):-
Given random sample size 'n' = 13
The mean waste recycled per person per day
x⁻ = 1.6 pounds
The standard deviation of the sample 's' = 0.43 pounds
Degrees of freedom
ν = n-1 = 13 -1 =12
t₀.₀₁ = 2.618
step(ii):-
The 98% confidence interval for the mean waste recycled per person per day for the population of Washington
[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]
[tex](1.6 - 2.618 \frac{0.43}{\sqrt{13} } , 1.6 - 2.618 \frac{0.43}{\sqrt{13} } )[/tex]
( 1.6 - 0.3122 , 1.6 +0.3122)
(1.2878 ,1.9122)
Final answer:-
The 98% confidence interval for the mean waste recycled per person per day for the population of Washington
(1.2878 ,1.9122)