Respuesta :
Answer:
the overall elongation δ of the bar is 1.2337 mm
Explanation:
From the information given :
According to the principle of superposition being applied to the axial load P of the system; we have:
[tex]\delta = \delta_{AB} +\delta_{BC} + \delta_{CD}[/tex]
where;
δ = overall elongation
[tex]\delta _{AB}[/tex] = elongation of bar AB
[tex]\delta _{BC}[/tex] = elongation of bar BC
[tex]\delta _{CD} =[/tex] elongation of bar CD]
If we replace; [tex]\dfrac{PL}{AE}[/tex] for δ and bt for area;
we have:
[tex]\delta = \dfrac{P_{AB}L_{AB}}{(b_{AB}t)E} +\dfrac{P_{BC}L_{BC}}{(b_{BC}t)E}+\dfrac{P_{CD}L_{CD}}{(b_{CD}t)E}[/tex]
where ;
P = load
L = length of the bar
A = area of the cross-section
E = young modulus of elasticity
Let once again replace:
P for [tex]P_{AB}, P_{BC} , P_{CD}[/tex] (since load in all member of AB, BC and CD will remain the same )
[tex]\dfrac{L}{4}[/tex] for [tex]L_{AB}[/tex],
[tex]\dfrac{L}{2}[/tex] for [tex]L_{BC}[/tex] and
[tex]\dfrac{L}{4}[/tex] for [tex]L_{CD}[/tex]
[tex]2\dfrac{b}{3}[/tex] for [tex]b_{BC}[/tex]
b for [tex]b_{CD}[/tex]
[tex]\delta = \dfrac{P (\dfrac{L}{4})}{btE}+ \dfrac{P (\dfrac{L}{2})}{2 \dfrac{b}{3}tE}+\dfrac{P (\dfrac{L}{4})}{btE}[/tex]
[tex]\delta = \dfrac{PL}{btE}[\dfrac{1}{4}+ \dfrac{1}{2}*\dfrac{3}{2}+ \dfrac{1}{4}][/tex]
[tex]\delta = \dfrac{5}{4}\dfrac{PL}{btE} --- \ (1)[/tex]
The stress in the central portion can be calculated as:
[tex]\sigma = \dfrac{P}{A}[/tex]
[tex]\sigma = \dfrac{P}{\dfrac{2}{3}bt}[/tex]
[tex]\sigma = \dfrac{3P}{2bt}[/tex]
So; Now:
[tex]\delta = \dfrac{5}{4}* \dfrac{2 * \sigma}{3}*\dfrac{L}{E}[/tex]
[tex]\delta= \dfrac{5}{4}* \dfrac{2 * 200}{3}*\dfrac{570}{77*10^3 \ MPa}[/tex]
δ = 1.2337 mm
Therefore, the overall elongation δ of the bar is 1.2337 mm