Respuesta :
Answer:
the isentropic efficiency of turbine is 99.65%
Explanation:
Given that:
Mass flow rate of LNG m = 20 kg/s
The pressure at the inlet [tex]P_1 =30 \ bar[/tex] = 3000 kPa
turbine temperature at the inlet [tex]T_1 = -160^0C[/tex] = ( -160+273)K = 113K
The pressure at the turbine exit [tex]P_2 = 3 bar[/tex] = 300 kPa
Power produced by the turbine W = 120 kW
Density of LNG [tex]\rho = 423.8 \ kg/m^3[/tex]
The formula for the workdone by an ideal turbine can be expressed by:
[tex]W_{ideal} = \int\limits^2_1 {V} \, dP[/tex]
[tex]W_{ideal} ={V} \int\limits^2_1 \, dP[/tex]
[tex]W_{ideal} ={V} [P]^2_{1}[/tex]
[tex]W_{ideal} ={V} [P_1-P_2][/tex]
We all know that density = mass * volume i.e [tex]\rho= m*V[/tex]
Then ;
[tex]V = \dfrac{m}{\rho}[/tex]
replacing it into the above previous derived formula; we have:
[tex]W_{ideal} ={ \dfrac{m}{\rho}} [P_1-P_2][/tex]
[tex]W_{ideal} ={ \dfrac{20}{423.8}} [3000-300][/tex]
[tex]W_{ideal} ={ \dfrac{20}{423.8}} [2700][/tex]
[tex]W_{ideal} =0.04719*[2700][/tex]
[tex]W_{ideal} =127.42 kW[/tex]
However ; the isentropic efficiency of turbine is given by the relation:
[tex]n_{isen} =\dfrac{W}{W_{ideal}}[/tex]
[tex]n_{isen} =\dfrac{120}{120.42}[/tex]
[tex]n_{isen} =0.9965[/tex]
[tex]n_{isen} =[/tex] 99.65%
Therefore, the isentropic efficiency of turbine is 99.65%