Answer: The exit temperature of the gas is [tex]32^{o}C[/tex].
Explanation:
The given data is as follows.
[tex]C_{p}[/tex] = 1000 J/kg K, R = 500 J/Kg K = 0.5 kJ/kg K (as 1 J = 0.001 kJ)
[tex]P_{1}[/tex] = 100 kPa, [tex]V_{1} = 15 m^{3}/s[/tex]
[tex]T_{1} = 27^{o}C[/tex] = (27 + 273) K = 300 K
For the given gas we assume that it is an ideal gas with constant pressure, negligible change in kinetic and potential energy, constant specific heat. At inlet,
[tex]P_{1}V_{1} = mRT_{1}[/tex]
or, m = [tex]\frac{P_{1}V_{1}}{RT}[/tex]
= [tex]\frac{100 \times 15}{0.5 \times 300}[/tex]
According to steady flow energy equation,
[tex]mh_{1} + Q = mh_{2} + W[/tex]
or, [tex]h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}[/tex]
[tex]C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}[/tex]
[tex](T_{2} - T_{1}) \times C_{p} = \frac{130 - 80}{10}[/tex]
[tex](T_{2} - T_{1})[/tex] = 5 K
[tex]T_{2}[/tex] = (300 + 5) K = 305 K or [tex]32^{o}C[/tex] (as [tex][305 - 273]^{o}C = 32^{o}C[/tex])
Thus, we can conclude that exit temperature of the gas is [tex]32^{o}C[/tex].