Respuesta :
Answer:
The correct option is
x equals the square root of w times the sum of w plus z end quantity
Step-by-step explanation:
The parameters given are
ABC = Right triangle, with ∠B = 90° and CA = Hypotenuse = CD + DA
∴ CA = w + z
BA = v
Hence;
x² = (w + z)² - v²
Where:
v² = z² + y²
∴ x² = (w + z)² - (z² + y²)
x² = w² + 2·w·z + z² - z² - y²
x² = w² + 2·w·z - y²
Where:
y² = x² - w²
We have;
x² = w² + 2·w·z - (x² - w²)
x² = w² + 2·w·z - x² + w²
Which gives;
2·x² = 2·w² + 2·w·z
Removing the common factors, we have;
x² = w² + w·z
[tex]\therefore x = \sqrt{w^2 + w \times z} = \sqrt{w \times(w + z)}[/tex]
The correct option is x equals the square root of w times the sum of w plus z end quantity.