PLS HELPP!! Will Venmo for answer!!! The figure below shows trapezoid ABCD on a coordinate plane. Which of the following expressions represents the perimeter of this figure in units?

PLS HELPP Will Venmo for answer The figure below shows trapezoid ABCD on a coordinate plane Which of the following expressions represents the perimeter of this class=

Respuesta :

Answer:

Option (4)

Step-by-step explanation:

Coordinates of the vertices of the given trapezoid,

A(-9, 4), B(-4, -3), C(2, -4), D(9, 1) and E(-3, 3)

Perimeter of ABCD = length of AB + length of BC + length of CD + length of DA

Length of AB = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

                      = [tex]\sqrt{(-9+4)^2+(4+3)^2}[/tex]

                      = [tex]\sqrt{25+49}[/tex]

                      = [tex]\sqrt{74}[/tex]

Length of BC = [tex]\sqrt{(-4-2)^2+(-3+4)^2}[/tex]

                      = [tex]\sqrt{36+1}[/tex]

                      = [tex]\sqrt{37}[/tex]

Length of CD = [tex]\sqrt{(2-9)^2+(-4-1)^2}[/tex]

                      = [tex]\sqrt{49+25}[/tex]

                      = [tex]\sqrt{74}[/tex]

Length of DA = [tex]\sqrt{(-9-9)^2+(4-1)^2}[/tex]

                      = [tex]\sqrt{324+9}[/tex]

                      = [tex]\sqrt{333}[/tex]      

Perimeter of ABCD = [tex]\sqrt{74}+\sqrt{37}+\sqrt{74}+\sqrt{333}[/tex]

                                = [tex]\sqrt{74}+\sqrt{37}+\sqrt{74}+3\sqrt{37}[/tex]

                                = [tex]4\sqrt{37}+2\sqrt{74}[/tex]

Therefore, Option (4) will be the answer.