1. Find the equation of the line passing through the point (2,−4) that is parallel to the line y=3x+2 y= 2. Find the equation of the line passing through the point (1,−5) and perpendicular to y=18x+2 y=

Respuesta :

Answer:

Step-by-step explanation:

1) Parallel lines have same slope

y =  3x + 2

m = 3

(2, -4)  ;  m = 3

equation:  y - y1 = m (x - x1)

y - [-4] = 3(x - 2)

y + 4 = 3x - 6

y = 3x - 6 - 4

y = 3x - 10

2) y = 18x + 2

m1 = 18

Slope the line perpendicular to  y = 18x + 2,  m2 = -1/m1 = -1/18

m2 = -1/18

(1 , -5)

[tex]y-[-5]=\frac{-1/18}(x-1)\\\\y+5=\frac{-1}{18}x + \frac{1}{18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-5\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{5*18}{1*18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{90}{18}\\\\y=\frac{-1}{18}x-\frac{89}{18}\\\\[/tex]