Which equation can be solved using the expression StartFraction negative 3 plus-or-minus StartRoot (3) squared + 4 (10) (2) EndRoot Over 2 (10) EndFraction for x?

Respuesta :

Answer:

A quadratic equation

Step-by-step explanation:

Given

[tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex]

Required

Which equation can be solved using the above expression

Using the above expression, the equation that can be solved is the roots of a quadratic equation

The general format of the roots of a quadratic equation is given as

[tex]x= \frac{-b +- \sqrt{b^2- 4ac}}{2a}[/tex]

When [tex]x= \frac{-b +- \sqrt{b^2- 4ac}}{2a}[/tex] is compared to [tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex], one would observe that they have the same format;

Solving [tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex] further to get the values of x

[tex]x = \frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex]

[tex]x = \frac{-3 +- \sqrt{9 + 4*10*2}}{2*10}[/tex]

[tex]x = \frac{-3 +- \sqrt{9 + 80}}{20}[/tex]

[tex]x = \frac{-3 +- \sqrt{89}}{20}[/tex]

So;

[tex]x = \frac{-3 + \sqrt{89}}{20} \ or \ x = \frac{-3 - \sqrt{89}}{20}[/tex]

Answer:

B) 2 = 3x + 10[tex]x^{2}[/tex]

Step-by-step explanation:

took the test