Respuesta :
Answer:
A quadratic equation
Step-by-step explanation:
Given
[tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex]
Required
Which equation can be solved using the above expression
Using the above expression, the equation that can be solved is the roots of a quadratic equation
The general format of the roots of a quadratic equation is given as
[tex]x= \frac{-b +- \sqrt{b^2- 4ac}}{2a}[/tex]
When [tex]x= \frac{-b +- \sqrt{b^2- 4ac}}{2a}[/tex] is compared to [tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex], one would observe that they have the same format;
Solving [tex]\frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex] further to get the values of x
[tex]x = \frac{-3 +- \sqrt{3^2 + 4(10)(2)}}{2(10)}[/tex]
[tex]x = \frac{-3 +- \sqrt{9 + 4*10*2}}{2*10}[/tex]
[tex]x = \frac{-3 +- \sqrt{9 + 80}}{20}[/tex]
[tex]x = \frac{-3 +- \sqrt{89}}{20}[/tex]
So;
[tex]x = \frac{-3 + \sqrt{89}}{20} \ or \ x = \frac{-3 - \sqrt{89}}{20}[/tex]