Given A triangle with sides x=6.35 cm and Y=12.25 cm with an angle of 90 degrees between them, find the length of the hypotenuse and the size of the other two angles.

Respuesta :

NotNav

Answer:

Hypotenuse = 13.798 cm, Angle1 = 27.4° and Angle2 = 62.59°

Step-by-step explanation:

The first step to help us understand the question would be to draw it out.

A right angled triangle, with the two sides that make the right angle being x and y (it does not matter which way you put x and y).

I have attached the quick sketch I will refer to.

To find the length of the hypotenuse (lets call it H) we can use Pythagoras theorem as shown below

[tex]{x^{2}+y^{2}} = H^{2}[/tex]

Substitute in our values for x and y, and solve for H

[tex]{6.35^{2}+12.25^{2}} = H^{2}[/tex]

[tex]190.385 = H^{2}[/tex]

[tex]\sqrt{190.385} = H[/tex]

H = 13.79 cm

To find the other two angles of the triangle we will use trigonometry

I will first look for angle ∅. Since we have all three sides of the triangle we can use any of the three trig functions, I chose to use Tan

Tan ∅ [tex]= \frac{opposite}{adjacent}[/tex]

Substitute in our values for x and y, and solve for ∅

Tan ∅ = [tex]\frac{6.35}{12.25}[/tex]

∅ = [tex]tan^{-1} \frac{6.35}{12.25}[/tex]

∅ = 27.4°

Now do the same for angle β. I chose to use Tan again

Tan β [tex]= \frac{opposite}{adjacent}[/tex]

Substitute in our values for x and y, and solve for β

Tan β = [tex]\frac{12.25}{6.35}[/tex]

β = [tex]tan^{-1} \frac{12.25}{6.35}[/tex]

β = 62.59°

Ver imagen NotNav